Details
Functional Data Analysis
Springer Series in Statistics 2nd ed. 2005
142,79 € 

Verlag:  Springer 
Format:  
Veröffentl.:  28.06.2006 
ISBN/EAN:  9780387227511 
Sprache:  englisch 
Anzahl Seiten:  428 
DRMgeschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
This is the second edition of a highly succesful book which has sold nearly 3000 copies world wide since its publication in 1997.
Many chapters will be rewritten and expanded due to a lot of progress in these areas since the publication of the first edition.
Bernard Silverman is the author of two other books, each of which has lifetime sales of more than 4000 copies. He has a great reputation both as a researcher and an author.
This is likely to be the bestselling book in the Springer Series in Statistics for a couple of years.
Many chapters will be rewritten and expanded due to a lot of progress in these areas since the publication of the first edition.
Bernard Silverman is the author of two other books, each of which has lifetime sales of more than 4000 copies. He has a great reputation both as a researcher and an author.
This is likely to be the bestselling book in the Springer Series in Statistics for a couple of years.
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine.
The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors' own work, some of which appears here for the first time.
Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He draws on his collaboration with researchers in speech articulation, motor control, meteorology, psychology, and human physiology to illustrate his technical contributions to functional data analysis in a wide range of statistical and application journals.
Bernard Silverman, author of the highly regarded "Density Estimation for Statistics and Data Analysis," and coauthor of "Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach," is Professor of Statistics at Bristol University. His published work on smoothing methods and other aspects of applied, computational, and theoretical statistics has been recognized by the Presidents' Award of the Committee of Presidents of Statistical Societies, and the award of two Guy Medals by the Royal Statistical Society.
The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors' own work, some of which appears here for the first time.
Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He draws on his collaboration with researchers in speech articulation, motor control, meteorology, psychology, and human physiology to illustrate his technical contributions to functional data analysis in a wide range of statistical and application journals.
Bernard Silverman, author of the highly regarded "Density Estimation for Statistics and Data Analysis," and coauthor of "Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach," is Professor of Statistics at Bristol University. His published work on smoothing methods and other aspects of applied, computational, and theoretical statistics has been recognized by the Presidents' Award of the Committee of Presidents of Statistical Societies, and the award of two Guy Medals by the Royal Statistical Society.
Introduction * Notation and Techniques * Representing Functional Data as Smooth Functions * The Roughness Penalty Approach * The Registration and Display of Functional Data * Principal Components Analysis for Functional Data * Regularized Principal Components Analysis * Principal Components Analysis of Mixed Data * Functional Linear Models * Functional Linear Models for Scalar Responses * Functional Linear Modesl for Functional Responses * Canonical Correlation and Discriminant Analysis * Differential Operators in Functional Data Analysis * Principal Differential Analysis * More General Roughness Penalties * Some Perspectives on FDA
Scientists and others today often collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modeling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine.
The book presents novel statistical technology, much of it based on the authors’ own research work, while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.
This second edition is aimed at a wider range of readers, and especially those who would like to apply these techniques to their research problems. It complements the authors' other recent volume Applied Functional Data Analysis: Methods and Case Studies. In particular, there is an extended coverage of data smoothing and other matters arising in the preliminaries to a functional data analysis. The chapters on the functional linear model and modeling of the dynamics of systems through the use of differential equations and principal differential analysis have been completely rewritten and extended to include new developments. Other chapters have been revised substantially, often to give more weight to examples and practical considerations.
Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He was President of the Statistical Society of Canada in 20023 and holds the Society’s Gold Medal for his work in functional data analysis.
Bernard Silverman is Master of St Peter’s College and Professor of Statistics at Oxford University. He was President of the Institute of Mathematical Statistics in 2000–1. He is a Fellow of the Royal Society. His main specialty is in computational statistics, and he is the author or editor of several highly regarded books in this area.
The book presents novel statistical technology, much of it based on the authors’ own research work, while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.
This second edition is aimed at a wider range of readers, and especially those who would like to apply these techniques to their research problems. It complements the authors' other recent volume Applied Functional Data Analysis: Methods and Case Studies. In particular, there is an extended coverage of data smoothing and other matters arising in the preliminaries to a functional data analysis. The chapters on the functional linear model and modeling of the dynamics of systems through the use of differential equations and principal differential analysis have been completely rewritten and extended to include new developments. Other chapters have been revised substantially, often to give more weight to examples and practical considerations.
Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He was President of the Statistical Society of Canada in 20023 and holds the Society’s Gold Medal for his work in functional data analysis.
Bernard Silverman is Master of St Peter’s College and Professor of Statistics at Oxford University. He was President of the Institute of Mathematical Statistics in 2000–1. He is a Fellow of the Royal Society. His main specialty is in computational statistics, and he is the author or editor of several highly regarded books in this area.
The second edition of a highly successful first edition
Contains a considerable amount of new material
Contains a considerable amount of new material
This is the second edition of a highly successful first edition. It contains a considerable amount of new material. Much of the work is original to the authors. Bernard Silverman has been very successful in writing books at a level and a style that appeals to theoretical and applied audiences.
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis.
The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis.
The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.